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Main Challenge: the stability-plasticity trade-off

Higher stability 
weakens the model from learning 
the data of new classes

Higher plasticity 
results in the forgetting of old classes
(i.e., “catastrophic forgetting”)

Image from: https://www.slideshare.net/xavigiro/lifelong-incremental-learning-d3l2-2017-upc-deep-learning-for-computer-vision 
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Different data-receiving settings require different stability/plasticity
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Different data-receiving settings require different stability/plasticity

E.g., CIFAR-100 5-phase

The “training-from-half” (TFH)[1]  setting requires higher stability
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Different data-receiving settings require different stability/plasticity

E.g., CIFAR-100 5-phase

The “training-from-half” (TFH)[1]  setting requires higher stability
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Existing CIL methods pre-fix the tradeoff balancing methods
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Existing CIL methods pre-fix the tradeoff balancing methods

● LUCIR[1], AANets[3], and RMM[4] are more suited for 
TFH
Reason: using strong (feature) knowledge distillation (KD)
             → high stability 
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Existing CIL methods pre-fix the tradeoff balancing methods

● LUCIR[1], AANets[3], and RMM[4] are more suited for 
TFH
Reason: using strong (feature) knowledge distillation (KD)
             → high stability 

● iCaRL[5] and LwF[6] are more suited for TFS
Reason: using weak (logit) knowledge distillation (KD)
             → high plasticity



Question: how to design an adaptive trade-off balancing method?

Our solution: formulating the CIL task as an online Markov decision process (MDP), 
Our solution: and learning a policy to produce the hyperparameters. 



Question: how to design an adaptive trade-off balancing method?

Our solution: formulating the CIL task as an online Markov decision process (MDP), 
Our solution: and learning a policy to produce the hyperparameters. 

Stage: each phase                              State: CIL model
Action: hyperparameters                    Reward: validation accuracy
Our objective: maximizing the cumulative reward, i.e., the average accuracy



How to solve the online MDP?

A common solution for an online MDP: approximating it as an online learning problem, 
and solve it using online learning algorithms.[7] 
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Cumulative reward

Phase j reward, i.e., Phase j validation accuracy
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Part 2: the long-term reward of a time-invariant local MDP  

[7]: The approximation error (regret) is sublinear in NPhase i

Part 1: the historical rewards  
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How to solve the online MDP?

A common solution for an online MDP: approximating it as an online learning problem, 
and solve it using online learning algorithms.[7] 
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Create a local environment  

[7]: The approximation error (regret) is sublinear in N



Policy training and deployment in Phase i



Our method can be used to optimize different hyperparameters

Ablation results (average accuracy, %) on CIFAR-100. Baseline: LUCIR[1]
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          : KD loss weights
        : : Classifier type (FC classifier vs. prototype classifier)
          : Learning rates



Our method performs better than other hyperparameter optimization methods

Ablation results (average accuracy, %) on CIFAR-100. Baseline: LUCIR[1]
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Cross-val fixed: using cross-validation to find a set of fixed hyperparameters
Offline RL: using the policy pre-trained in an offline manner as [4].
Bilevel HO: using a bilevel hyperparameter optimization method as [8].



Our AANets achieve SOTA performance

● Generic
● Boost the performance for THREE different baselines



The activation maps using Grad-CAM

The 5-th phase (the last phase) model on ImageNet-Subset 5-phase. Samples are 
selected from the classes coming in the zeroth, third, and fifth phases, respectively.



Thanks!

Online Hyperparameter Optimization for Class-Incremental Learning

Webpage:   https://class-il.mpi-inf.mpg.de/online/  

Code:          https://class-il.mpi-inf.mpg.de/online/code/    
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