

Online Hyperparameter Optimization for Class-Incremental Learning

Yaoyao Liu¹ Yingying Li² Bernt Schiele¹ Qianru Sun³

¹Max Planck Institute for Informatics ²California Institute of Technology ³Singapore Management University

Research background: Class-Incremental Learning (CIL)

Phase 1

Research background: Class-Incremental Learning (CIL)

Research background: Class-Incremental Learning (CIL)

Main Challenge: the stability-plasticity trade-off

Higher stability weakens the model from learning the data of new classes

Higher plasticity results in the forgetting of old classes (i.e., "catastrophic forgetting")

Different data-receiving settings require different stability/plasticity

- [1] Hou, Saihui, et al. "Learning a unified classifier incrementally via rebalancing." CVPR 2019.
- [2] Castro, Francisco M., et al. "End-to-end incremental learning." ECCV 2018.

Different data-receiving settings require different stability/plasticity

E.g., CIFAR-100 5-phase

The "training-from-half" (TFH)^[1] setting requires higher stability

50 classes	10 classes				
Phase 0	Phase 1	Phase 2	Phase 3	Phase 4	Phase 5

- [1] Hou, Saihui, et al. "Learning a unified classifier incrementally via rebalancing." CVPR 2019.
- [2] Castro, Francisco M., et al. "End-to-end incremental learning." ECCV 2018.

Different data-receiving settings require different stability/plasticity

E.g., CIFAR-100 5-phase

The "training-from-half" (TFH)^[1] setting requires higher stability

50 classes	10 classes				
Phase 0	Phase 1	Phase 2	Phase 3	Phase 4	Phase 5

The "training-from-scratch" (TFS)[2] setting requires higher plasticity

| 20 classes |
|------------|------------|------------|------------|------------|
| Phase 1 | Phase 2 | Phase 3 | Phase 4 | Phase 5 |

- [1] Hou, Saihui, et al. "Learning a unified classifier incrementally via rebalancing." CVPR 2019.
- [2] Castro, Francisco M., et al. "End-to-end incremental learning." ECCV 2018.

Existing CIL methods pre-fix the tradeoff balancing methods

- [1] Hou, Saihui, et al. "Learning a unified classifier incrementally via rebalancing." CVPR 2019.
- [3] Liu, Yaoyao, Bernt Schiele, and Qianru Sun. "Adaptive aggregation networks for class-incremental learning." CVPR 2021.
- [4] Liu, Yaoyao, Bernt Schiele, and Qianru Sun. "RMM: Reinforced memory management for class-incremental learning." NeurIPS 2021.
- [5] Rebuffi, Sylvestre-Alvise, et al. "icarl: Incremental classifier and representation learning." CVPR 2017.
- [6] Li, Zhizhong, and Derek Hoiem. "Learning without forgetting." TPAMI 2017.

Existing CIL methods pre-fix the tradeoff balancing methods

LUCIR^[1], AANets^[3], and RMM^[4] are more suited for TFH

Reason: using strong (feature) knowledge distillation (KD)

→ high stability

- [1] Hou, Saihui, et al. "Learning a unified classifier incrementally via rebalancing." CVPR 2019.
- [3] Liu, Yaoyao, Bernt Schiele, and Qianru Sun. "Adaptive aggregation networks for class-incremental learning." CVPR 2021.
- [4] Liu, Yaoyao, Bernt Schiele, and Qianru Sun. "RMM: Reinforced memory management for class-incremental learning." NeurIPS 2021.
- [5] Rebuffi, Sylvestre-Alvise, et al. "icarl: Incremental classifier and representation learning." CVPR 2017.
- [6] Li, Zhizhong, and Derek Hoiem. "Learning without forgetting." TPAMI 2017.

Existing CIL methods pre-fix the tradeoff balancing methods

- [1] Hou, Saihui, et al. "Learning a unified classifier incrementally via rebalancing." CVPR 2019.
- [3] Liu, Yaoyao, Bernt Schiele, and Qianru Sun. "Adaptive aggregation networks for class-incremental learning." CVPR 2021.
- [4] Liu, Yaoyao, Bernt Schiele, and Qianru Sun. "RMM: Reinforced memory management for class-incremental learning." NeurIPS 2021.
- [5] Rebuffi, Sylvestre-Alvise, et al. "icarl: Incremental classifier and representation learning." CVPR 2017.
- [6] Li, Zhizhong, and Derek Hoiem. "Learning without forgetting." TPAMI 2017.

Question: how to design an adaptive trade-off balancing method?

Our solution: formulating the CIL task as an online Markov decision process (MDP), and learning a policy to produce the hyperparameters.

Question: how to design an adaptive trade-off balancing method?

Our solution: formulating the CIL task as an online Markov decision process (MDP), and learning a policy to produce the hyperparameters.

Stage: each phase State: CIL model

Action: hyperparameters **Reward**: validation accuracy

Our objective: maximizing the cumulative reward, i.e., the average accuracy

Cumulative reward

How to solve the online MDP?

A common solution for an **online MDP**: approximating it as an **online learning problem**, and solve it using **online learning algorithms**.^[7]

[7] Even-Dar, Eyal, Sham M. Kakade, and Yishay Mansour. "Online Markov decision processes." Mathematics of Operations Research 34.3 (2009): 726-736.

How to solve the online MDP?

A common solution for an **online MDP**: approximating it as an **online learning problem**, and solve it using **online learning algorithms**.^[7]

Reference

[7] Even-Dar, Eyal, Sham M. Kakade, and Yishay Mansour. "Online Markov decision processes." Mathematics of Operations Research 34.3 (2009): 726-736.

How to solve the online MDP?

A common solution for an **online MDP**: approximating it as an **online learning problem**, and solve it using **online learning algorithms**.^[7]

Policy training and deployment in Phase i

Our method can be used to optimize different hyperparameters

Ablation results (average accuracy, %) on CIFAR-100. Baseline: LUCIR^[1]

No.	Op	timizir	ng	N	=5	N:	N=25		
	(β, γ)	δ	λ	TFH	TFS	TFH	TFS		
1	В	aseline	;	63.11	62.96	57.47	49.16		
2	√			63.20	63.60	58.27	50.91		
3	\checkmark	\checkmark		63.23	64.08	58.20	51.94		
4	✓	✓	✓	63.88	64.92	59.27	52.44		
5	Cros	s-val fi	xed	63.33	64.02	57.50	51.64		
6	Off	fline RI	L	63.42	63.88	58.12	51.53		
7	Bil	evel H	O	63.20	63.02	57.56	49.42		

 (β, γ) : KD loss weights

 δ : Classifier type (FC classifier vs. prototype classifier)

 λ : Learning rates

Reference

[1] Hou, Saihui, et al. "Learning a unified classifier incrementally via rebalancing." CVPR 2019.

Our method performs better than other hyperparameter optimization methods

Ablation results (average accuracy, %) on CIFAR-100. Baseline: LUCIR^[1]

No.	Op	timizii	ng	N	=5	N=	N=25		
	(β, γ)	δ	λ	TFH	TFS	TFH	TFS		
1	В	aseline	e	63.11	62.96	57.47	49.16		
2	\checkmark			63.20	63.60	58.27	50.91		
3	\checkmark	\checkmark		63.23	64.08	58.20	51.94		
4	√	\checkmark	√	63.88	64.92	59.27	52.44		
5	Cros	s-val fi	ixed	63.33	64.02	57.50	51.64		
6	Off	line R	L	63.42	63.88	58.12	51.53		
7	Bil	evel H	O	63.20	63.02	57.56	49.42		

Cross-val fixed: using cross-validation to find a set of fixed hyperparameters **Offline RL**: using the policy pre-trained in an offline manner as [4]. **Bilevel HO**: using a bilevel hyperparameter optimization method as [8].

- [1] Hou, Saihui, et al. "Learning a unified classifier incrementally via rebalancing." CVPR 2019.
- [4] Liu, Yaoyao, Bernt Schiele, and Qianru Sun. "RMM: Reinforced memory management for class-incremental learning." NeurIPS 2021.
- [8] Franceschi, Luca, et al. "Bilevel programming for hyperparameter optimization and meta-learning." ICML 2018.

Our AANets achieve SOTA performance

Methods	CIF	AR-100,	N=5	CIFA	R-100 , <i>I</i>	V=25	Imagel	Net-Subs	et, N=5	ImageN	ImageNet-Subset, N=25		
Methods	TFH	TFS	Avg.	TFH	TFS	Avg.	TFH	TFS	Avg.	TFH	TFS	Avg.	
iCaRL [30] PODNet [8] DER [40] FOSTER [38]	58.1 64.7 67.6 70.4	64.0 63.6 72.3 72.5	61.0 64.2 70.0 71.5	48.1 60.3 65.5 63.8	53.2 45.3 67.3 70.7	50.7 52.8 66.4 67.3	65.3 64.3 78.4 80.2	70.4 58.9 76.9 78.3	67.9 61.6 77.7 79.3	53.0 68.3 75.4 69.3	53.5 39.1 71.0 72.9	53.3 53.7 73.2 71.1	
LUCIR [14] w/ ours		63.0±0.6 64.9±0.5			49.2±0.5 52.4±0.5			66.7±0.5 68.4±0.6		61.4±0.7 62.9±0.6		53.8±0.8 58.5±0.6	
AANets [22] w/ ours					44.4±0.4 50.3±0.5 ↑5.9			68.9±0.6 70.6±0.5		$72.2_{\pm 0.6}$ $72.9_{\pm 0.5}$		66.5±0.6 68.9±0.5	
RMM [23] w/ ours	67.6±0.7 70.8 ±0.7	70.4±0.8 72.7±0.6	Marie Control Control		58.4±0.6 65.9±0.7			80.5±0.3 82.2±0.4				73.3±0.3 74.7±0.3	

- Generic
- Boost the performance for THREE different baselines

The activation maps using Grad-CAM

The 5-th phase (the last phase) model on ImageNet-Subset 5-phase. Samples are selected from the classes coming in the zeroth, third, and fifth phases, respectively.

Thanks!

Online Hyperparameter Optimization for Class-Incremental Learning

Webpage: https://class-il.mpi-inf.mpg.de/online/

Code: https://class-il.mpi-inf.mpg.de/online/code/