

Task & Challenge & Contributions

• Task: Class-Incremental Learning^[1]

- Different classes arrive in different phases;
- At any time, it provides a classifier for the classes observed so far;
- The memory is limited.

- Challenge: the stability-plasticity trade-off for different data-receiving settings
 - LUCIR, AANets, and RMM are more suited for TFH
 - iCaRL and LwF are more suited for TFS

Online Hyperparameter Optimization for Class-Incremental Learning

Yaoyao Liu¹ Yingying Li² Bernt Schiele¹ Qianru Sun³

¹Max Planck Institute for Informatics ²California Institute of Technology ³Singapore Management University

Framework & Optimization Steps

• The computing flow of our method across all phases

• The training process of our method in Phase *i*

• Algorithms

	_						
Al	14 /	// CIL t					
I	15 \$	Sample a					
	16	16 Train Θ_i					
	learnable parameters w, numbers of		Θ_{i-1} , a				
e	pochs M_1 and M_2 .	17 \$	Select ne				
C	_	herding					
	learnable parameters w.						
1 /	/ Policy learning						
2 if	2 if $i=1$ then						
3	Initialize $\mathbf{w} = \{1, \ldots, 1\};$	I	nput : (
4 fo	or t in $i,, T$ do		(
5	Randomly sample a class-balanced subset $\mathcal{B}_{0:i}$	O	Output: 1				
	from $\mathcal{E}_{0:i-1} \cup \mathcal{D}_i$,;						
6	Create the local environment	1 Ir	nitialize				
	$h_i = ((\mathcal{E}_{0:i-1} \cup \mathcal{D}_i) \setminus \mathcal{B}_{0:i}, \mathcal{B}_{0:i});$	2 fc	or epoch				
7	Set the policy $\mathbf{p} = \mathbf{w}/ \mathbf{w} $;	3	for m				
8	Sample an action $\mathbf{a}_t \sim \mathbf{p}$;	4	C				
9	for j in $i,, i + n$ do		H				
10	Train Θ_j for M_1 epochs by Algorithm 2	5	U				
	with inputs Θ_{j-1} , \mathbf{a}_t , h_i ;	6 fc	or mini-b				
11	Collect the reward $r_{h_i}(\Theta_j, \mathbf{a}_t)$;	7	Comp				
12	Compute the cumulative reward $\hat{R}(\mathbf{a}_t, h_i)$ by	8 C	ompute				
	Eq. <mark>6</mark> ;	8	$\{(\mu(x_{val}))\}$				
13	Update w by Eq. 8;	-					

training

an action $\mathbf{a}_i \sim \mathbf{p}$; i for M_2 epochs by Algorithm 2 with inputs $\mathbf{a}_i, \mathcal{H}_i = (\mathcal{E}_{0:i-1} \cup \mathcal{D}_i, \mathcal{Q}_{0:i});$ we exemplars $\mathcal{E}_{0:i}$ from $\mathcal{E}_{0:i-1} \cup \mathcal{D}_i$ using

2: Training and evaluation for action a

Old model Θ_{old} , action $\mathbf{a} = \{\beta, \gamma, \delta, \lambda\},\$ environment $h = \{\mathcal{T}, \mathcal{Q}\}.$ New model Θ , reward $r_h(\Theta, \mathbf{a})$ (i.e., the validation accuracy). Θ with Θ_{old} ; hs do *nini-batch* $(x, y) \in \mathcal{T}$ **do** Compute the loss $\mathcal{L}_{ ext{overall}}(x,y;\Theta_{ ext{old}},eta,\gamma)$ by Eq. 3; Jpdate Θ by Eq. 4 with λ ; -batch $(x_{val}, y_{val}) \in \mathcal{Q}$ do pute predictions $\mu(x_{val}; \Theta)$ by Eq. 5 with δ ; e the reward $r_h(\Theta, \mathbf{a})$ using $\{y,y_{\mathrm{val}})\}_{(x_{\mathrm{val}},y_{\mathrm{val}})\in\mathcal{Q}}.$

Experiment Results

• Ablation study

No	Optimizing			N	=5	N=25		
INO.	(eta,γ)	δ	λ	TFH	TFS	TFH	TFS	
1	В	aseline	e	63.11	62.96	57.47	49.16	
2	\checkmark			63.20	63.60	58.27	50.91	
3	\checkmark	\checkmark		63.23	64.08	58.20	51.94	
4	\checkmark	\checkmark	\checkmark	63.88	64.92	59.27	52.44	
5	Cros	s-val fi	xed	63.33	64.02	57.50	51.64	
6	Of	line Rl	L	63.42	63.88	58.12	51.53	
7	Bil	evel H	0	63.20	63.02	57.56	49.42	

• Comparing w/ SOTA

Mathada	CIFAR-100 , <i>N</i> =5			CIFAR-100 , <i>N</i> =25			ImageNet-Subset, N=5			ImageNet-Subset, N=25		
Methous	TFH	TFS	Avg.	TFH	TFS	Avg.	TFH	TFS	Avg.	TFH	TFS	Avg.
iCaRL [30]	58.1	64.0	61.0	48.1	53.2	50.7	65.3	70.4	67.9	53.0	53.5	53.3
PODNet [8]	64.7	63.6	64.2	60.3	45.3	52.8	64.3	58.9	61.6	68.3	39.1	53.7
DER [40]	67.6	72.3	70.0	65.5	67.3	66.4	78.4	76.9	77.7	75.4	71.0	73.2
FOSTER [38]	70.4	72.5	71.5	63.8	70.7	67.3	80.2	78.3	79.3	69.3	72.9	71.1
LUCIR [14]	63.1±0.7	$63.0_{\pm 0.6}$	63.1±0.7	$57.5_{\pm 0.4}$	$49.2{\scriptstyle \pm 0.5}$	$53.4_{\pm 0.5}$	65.3 ± 0.6	$66.7{\scriptstyle\pm0.5}$	$66.0_{\pm 0.6}$	$61.4_{\pm 0.7}$	$46.2_{\pm 0.8}$	$53.8{\scriptstyle \pm 0.8}$
w/ ours	$63.9{\scriptstyle \pm 0.6}$	$64.9{\scriptstyle \pm 0.5}$	$64.4{\scriptstyle \pm 0.6}$	$59.3{\scriptstyle \pm 0.5}$	$52.4{\scriptstyle \pm 0.5}$	$55.9{\scriptstyle \pm 0.5}$	70.6 ± 0.7	$68.4{\scriptstyle \pm 0.6}$	$69.5{\scriptstyle \pm 0.7}$	$62.9{\scriptstyle \pm 0.6}$	$54.1{\scriptstyle \pm 0.6}$	$58.5{\scriptstyle \pm 0.6}$
	↑0.8	↑1.9	†1.3	↑1.8	↑3.2	↑2.5	†5.3	↑1.7	↑3.5	↑1.5	<u>†7.9</u>	<u></u> †4.7
AANets [22]	$65.3{\scriptstyle \pm 0.4}$	$63.1{\scriptstyle \pm 0.3}$	64.2 ± 0.4	63.2 ± 0.3	$44.4{\scriptstyle\pm0.4}$	$53.8{\scriptstyle \pm 0.4}$	$77.0_{\pm 0.7}$	$68.9{\scriptstyle \pm 0.6}$	$73.0{\scriptstyle \pm 0.7}$	$72.2_{\pm 0.6}$	$60.7{\scriptstyle \pm 0.5}$	$66.5{\scriptstyle \pm 0.6}$
w/ ours	67.0 ± 0.3	65.1 ± 0.3	$66.1{\scriptstyle \pm 0.3}$	64.1 ± 0.4	$50.3{\scriptstyle \pm 0.5}$	57.2 ± 0.5	77.3 ± 0.6	$70.6{\scriptstyle \pm 0.5}$	$74.0{\scriptstyle \pm 0.6}$	$72.9{\scriptstyle \pm 0.5}$	$64.8{\scriptstyle \pm 0.5}$	$68.9{\scriptstyle \pm 0.5}$
	↑1.7	↑2.0	↑1.9	↑0.9	↑5.9	↑3.4	↑0.3	↑1.7	↑1.0	↑0.7	↑4.1	↑2.4
RMM [23]	67.6±0.7	$70.4{\scriptstyle \pm 0.8}$	$69.0{\scriptstyle \pm 0.8}$	$65.6{\scriptstyle \pm 0.6}$	$58.4{\scriptstyle \pm 0.6}$	$62.0_{\pm 0.6}$	$79.5{\scriptstyle \pm 0.2}$	$80.5{\scriptstyle\pm0.3}$	80.0 ± 0.3	$75.0_{\pm 0.3}$	71.6 ± 0.3	$73.3{\scriptstyle \pm 0.3}$
w/ ours	$\textbf{70.8}{\scriptstyle \pm 0.7}$	$\textbf{72.7}{\scriptstyle \pm 0.6}$	71.8 ± 0.7	$69.5{\scriptstyle \pm 0.8}$	$65.9{\scriptstyle \pm 0.7}$	$67.7{\scriptstyle\pm0.8}$	$81.0{\scriptstyle \pm 0.3}$	82.2 ± 0.4	$81.6{\scriptstyle \pm 0.4}$	76.1 \pm 0.2	73.2 ± 0.4	74.7 ± 0.3
	† 3.2	<u>†2.3</u>	↑2.8	†3.9	↑7.5	↑5.7	↑1.5	↑1.7	↑1.6	†1.1	†1.6	† 1.4

• Grad-CAM Visualizations

References

[1] Rebuffi, Sylvestre-Alvise, et al. "icarl: Incremental classifier and representation learning." CVPR 2017.

• The hyperparameter values

